

DZ81-DZS500 Smart Three Phase Meter User Manual (V2.0)

Heyuan Intelligence Technology Co., Ltd

IMPORTANT DECLARATIONS

Copyright © 2018 Heyuan Intelligence Technology Co., Ltd All Rights Reserved

This manual may not be reproduced, copied, transmitted or transcribed in whole or in part by any means without the expressed written permission of Heyuan. Any shall be investigated for legal responsibility in violation of copyright or other intellectual property rights of the Company. We check the user manual's contents regularly and will make necessary amendments in next version. Welcome to give advice for some unexpected errors. The rights of upgrading without notice are reserved.

Please read this manual carefully before the product is operated. And once you start operating the meter, you'll be considered to have read this manual and accept all our terms. Heyuan shall not be responsible or liable for any damages or injuries caused by improper meter installation and/or operation.

Attention: the following symbols in this manual refer to meanings as follows

Electric Shock Symbol: Carries information about procedures which must be followed to reduce the risk of electric shock and danger to personal health

Safety Alert Symbol: Carries information about circumstances which if not considered may result in injury or death

The meter must be installed and operated by one who has experience with high-voltage devices or has qualifications. Please connect the meter to correct voltage before operating the meter. Please install and use the meter according to the user manual. Heyuan shall not be responsible or liable for any damages or injuries caused without following the instructions in the user manual.

Contents

Chapter 1 Me	eter Overview	1
Chapter 2 Sp	pecifications	1
2.1 I	nput Voltage	1
2.2 I	nput Current	1
2.3 E	Energy	1
2.4 F	Frequency Measurement	1
2.5 N	Measuring Accuracy	1
2.6 0	Communication	1
2.7 F	Power Supply	1
2.8 V	Norking Condition	1
2.9 F	Pulse Output of Imported Active Energy	2
Chapter 3 Ins	stallation and Typical Wiring	2
3.1 E	Dimension (unit: mm) and Comparison Table of Digital Letters Displayed	2
3.2 I	nstallation Method	2
Chapter 4 Te	rminals	2
Chapter 5 Ty	pical Wiring	5
Chapter 6 Me	eter Display and Operation	6
Chapter 7 Aft	ter-sales Service	20
Chapter 12 C	contact Us	:1

Chapter 1 Meter Overview

DZ81-DZS500 is an advanced, smart networked electricity energy meter. It is widely used in power distribution sites, energy management systems and intelligent monitoring systems of different industries. It measures electric parameters i.e. three-phase/line voltage, three-phase current, zero-sequence voltage, zero-sequence current, voltage unbalance, current unbalance, active power, reactive power, power factor, frequency, load property, 2~31st harmonic analysis, active energy, reactive energy and multi-tariff energy etc. Display: LED display.

Chapter 2 Specifications

2.1 Input Voltage Reference Voltage: 3×220V/3	80V Voltage Range: 0~1.2Un	
2.2 Input Current Measuring Range: 1‰In~1In Starting Current: 1‰In	Secondary Current of CT: 5A	
2.3 Energy Accuracy Class: Class 0.5	Resolution: 0.1kWh	
2.4 Frequency Measuremen Frequency Measuring Range:	t 45~65Hz	
2.5 Measuring Accuracy Voltage/Current: 0.2%	Energy Accuracy: Class 0.5 P	ower Factor: 1%
2.6 Communication RS485/Modbus-RTU Communic	ation Protocol Baud Rate: 2400~	19200bps (programmable)

Communication Default Value							
Address	Baud Rate	Data Bits	Stop Bits	Parity			
01	9600bps	8	1	No			

2.7 Power Supply

Power Supply: AC85~265V(45 ~ 55HZ)/ DC85 ~ 300V Power Consumption: <3VA Power-line Connection Terminals: L/+ and N/-

2.8 Pulse Output of Import Active Energy

Pulse Constant Pulse Width		Max. Current	Working Voltage	
2000imp/kWh	50±2ms	10mA(DC)	5V~24V	

2.9 Working Condition

Operating Temperature: -20° C ~ $+65^{\circ}$ C Storage Temperature: -40° C ~ $+85^{\circ}$ C Relative Humidity: 20° ~ 90° (non-condensing)

Chapter 3 Dimension and Installation

3.1 Dimension (unit: mm)

3.2 Installation Method

Installation Environment: DZS500 should be installed in a dry and dust free environment. Avoid exposing meter to excessive heat, radiation and high electrical noise sources. Installation Method: DIN rail Mounted

Chapter 4 Terminals

4.1 Digital Input Status

Terminal No.	Terminal Description	Remark
20	DI COM	
21	DI 1	passive dry contact,
22	DI 2	internal power supply (DC24V)
23	DI 3	

4.2 Digital Output Status

Terminal No.	Terminal Description	Remark
25	Protect Normally Closed DO NC1	
26	COM K1	
27	Protect Normally Open NO1	contact capacity
28	Normally Closed DO NC2	10A/250VAC
29	COM K2	
30	Normally Open DO NO2	

4.3 Energy Pulse Output Status

Terminal No. Terminal Description		Remark
31	Active Energy Pulse Output P+	pull
32	Active Energy Pulse Output P-	nun

4.4 Upper Row of Terminals

| \bigcirc |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| COM | DI1 | DI2 | DI3 | | NC1 | K1 | NO1 | NC2 | K2 | NO2 | P + | P- | A+ | B- | G |
| | D | I | | Null | Pr | otect D | 0 | | DO2 | | Pulse | Output | Commu | unication | Interface |

4.5 Lower Row of Terminals

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
IA	IA	ΙB	IB	IC.	IC	VA	VB	VC	VN				L/+	N/-	÷
Current Input				Voltag	e Input			Null		Po	wer Sup	ply			

4.6 Standard Definition of Terminal Block

Terminal No.	Terminal Description	Original Status	Remark
01	Current Input IA *		
02	Current Input IA		
03	Current Input IB *		$\Delta C 3 \times 5(6) \Delta$
04	Current Input IB		
05	Current Input IC *		
06	Current Input IC		
07	Voltage Input VA		$AC 3 \times 220 V/380 V$
08	Voltage Input VB		AC 3 ^ 220 7 380 V

09	Voltage Input VC	
10	Neutral Line Input VN	
14	Meter Power Input L/+	nower supply:
15	Meter Power Input N/ $-$	
16	GND	AC 85V \sim 265V / DC 85~300V

Terminal No.	Terminal Description	Original Status	Remark
20	DI СОМ		
21	DI 1		passive dry contact, internal
22	DI 2		power supply (DC24V)
23	DI 3		
24	Null		
25	Protect Normally Closed DO NC1	normally closed	
26	СОМ К1		
27	Protect Normally Open DO NO1	normally open	contact capacity 10A/250VAC
28	Normally Closed DO NC2	normally closed	
29	СОМ К2		
30	Normally Open DO NO2	normally open	
31	Active Energy Pulse Output P+		
32	Active Energy Pulse Output P-		
33	Communication RS485 A+		DC405 interference Madhua DTU
34	Communication RS485 B-		communication protocol
35	G		

Chapter 5 Typical Wiring

Chapter 6 Meter Display and Operation

1st Interface, Start-up Interface

This interface displays the present meter address, communication baud rate, software version number when power up and reset. It will enter next interface automatically 3 seconds later.

2nd Interface, Phase A Current IA Interface

IA 300.2

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 3rd interface. Press button "Menu", it will enter 8th interface.

3rd Interface, Phase B Current IB Interface

16 3002

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 4th interface. Press button "Menu", it will enter 8th interface.

4th Interface, Phase C Current IC Interface

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 5th interface. Press button "Menu", it will enter 8th interface.

5th Interface, Zero-sequence Current Interface

310 000.2

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 6th interface. Press button "Menu", it will enter 8th interface.

6th Interface, Average Current Interface

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 7th interface. Press button "Menu", it will enter 8th interface.

7th Interface, Current Imbalance Interface

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 2nd interface. Press button "Menu", it will enter 8th interface.

8th Interface, Phase Voltage Ua Interface

UAn 2325

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 9th interface. Press button "Menu", it will enter 16th interface.

9th Interface, Phase Voltage Ub Interface

Ubn 232.6

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 10th interface. Press button "Menu", it will enter 16th interface.

10th Interface, Phase Voltage Uc Interface

UCn 2324

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 11th interface. Press button "Menu", it will enter 16th interface.

11th Interface, Line Voltage Uab Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 12th interface. Press button "Menu", it will enter 16th interface.

12th Interface, Line Voltage Ubc Interface

UPC 4051

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 13th interface. Press button "Menu", it will enter 16th interface.

13th Interface, Line Voltage Uca Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 14th interface. Press button "Menu", it will enter 16th interface.

14th Interface, Zero-sequence Voltage 3U0 Interface

r.5e0 0ue

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 15th interface. Press button "Menu", it will enter 16th interface.

15th Interface, Frequency FREQ Interface

F-E9 5001

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 8th interface. Press button "Menu", it will enter 16th interface.

16th Interface, Phase A Active Power Interface

PR DDI

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 17th interface. Press button "Menu", it will enter 28th interface.

17th Interface, Phase B Active Power Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 18th interface. Press button "Menu", it will enter 28th interface.

18th Interface, Phase C Active Power Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 19th interface. Press button "Menu", it will enter 28th interface.

19th Interface, Average Active Power Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 20th interface. Press button "Menu", it will enter 28th interface.

20th Interface, Phase A Reactive Power Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 22th interface. Press button "Menu", it will enter 28th interface.

21st Interface, Phase B Reactive Power Interface

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will enter 22nd interface. Press button "Menu", it will enter 28th interface.

22nd Interface, Phase C Reactive Power Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 23rd interface. Press button "Menu", it will enter 28th interface.

23rd Interface, Average Reactive Power Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 24th interface. Press button "Menu", it will enter 28th interface.

24th Interface, Phase A Power Factor Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 25th interface. Press button "Menu", it will enter 28th interface.

25th Interface, Phase B Power Factor Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 26th interface. Press button "Menu", it will enter 28th interface.

26th Interface, Phase C Power Factor Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 27th interface. Press button "Menu", it will enter 28th interface.

27th Interface, Average Power Factor Interface

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will switch back to 16th interface. Press button "Menu", it will enter 28th interface.

28th Interface, Import Total Active Energy Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 29th interface. Press button "Menu", it will enter 36th interface.

29th Interface, Interface of Import Active Energy in Sharp Period

The interface above shows P=5.3kWh. Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will display import active energy in sharp, peak, off-peak and shoulder period in turn. Press button "Menu", it will enter 30th interface.

30th Interface, Export Total Active Energy Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 31st interface. Press button "Menu", it will enter 32nd interface.

31st Interface, Interface of Export Active Energy in Sharp Period

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will display export active energy in sharp, peak, off-peak and shoulder period in turn. Press button "Menu", it will enter 32nd interface.

32nd Interface, Import Total Reactive Energy Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 33rd interface. Press button "Menu", it will enter 34th interface.

33rd Interface, Interface of Import Reactive Energy in Sharp Period

00000008.3

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will display import reactive energy in sharp, peak, off-peak and shoulder period in turn. Press button "Menu", it will enter 34th interface.

34th Interface, Export Total Reactive Energy Interface

Press buttons "▲" or "Menu" to check other parameters. Press button "▲", it will enter 35th interface. Press button "Menu", it will enter 36th interface.

35th Interface, Interface of Export Reactive Energy in Sharp Period

Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will display export reactive energy in sharp, peak, off-peak and shoulder period in turn. Press button

36th Interface, Present Time Interface

LL 13.57.07 HH2017.102.6

The present interface displays hour, minute, second, year, month, day from left to right. Press buttons " \blacktriangle " or "Menu" to check other parameters. Press button " \blacktriangle ", it will switch time interface. Press button "Menu", it will enter 2nd interface.

37th Interface, Password Authentication Interface

Hold down button " \checkmark " until it displays "PASS" on the left and "0000" on the right. At this time, the first-digit value can be modified. Press button " \blacktriangle ", it will modify values. Each time press button " \blacktriangle ", it will plus 1. After completing modification, press button " \checkmark " to shift next digit. Next digits can be modified as above. The default password is "5555". After completing all modifications, press button " \checkmark " to pass password authentication and enter parameter setting interface. If password is wrong, press button " \checkmark " to enter 2nd interface. And hold down button " \checkmark " until it displays "PASS" on the left and "0000" on the right. Then correct password can be entered.

38th Interface, Parameter Group 1 Interface

Press button "—" to enter parameter group 1 and then enter 39th interface. Press button "Menu" to switch and enter parameter groups.

39th Interface, Meter Address Interface

Meter address is important for meter to communicate and there should not be repetitive addresses in same communication network segment because wrong meter address may lead to conflict. The present interface shows that the default meter address is "1". After completing modification, press button "—" and it will enter 40th interface.

40th Interface, Communication Baud Rate Interface

Communication baud rate in same communication network segment should be the same. User should set communication baud rate according to conditions on sites and communication distance. Communication baud rates can be set as follows (unit: bps) by press button " \blacktriangle ".

Interface					
Display	2400	4800	9600	19200	38400

The present interface shows that the default baud rate is "9600". After completing modification, press button "-" and it will enter 41st interface.

41st Interface, Display Mode Interface

SCro AUto

Press button " \blacktriangle " to set the display mode as automatic cyclical display $\blacksquare \square \square \square$ or button operation display $\blacksquare \square \square \square$. The present interface displays button operation display. After completing modification, press button " \twoheadleftarrow " and it will enter 42nd interface.

42nd Interface, Wiring Mode Interface

лодЕ З-чу

Press button "**A**" to choose the wiring mode from $\exists -444$ (3-phase 4-wire Y wiring) or $\exists -344$ (3-phase 3-wire \triangle wiring). When choosing $\exists -444$ (3-phase 3-wire \triangle wiring), it will display interfaces of three phase current, three phase line voltage, three phase total power etc. After completing modification, press button "**A**" and it will enter 43rd interface.

43rd Interface, Energy Metering Direction Interface

F-FF no

Press button " \blacktriangle " to choose the energy metering direction from \square (bidirectional energy metering) or \square (only metering import active energy). After completing modification, press button " \prec " and it will enter 44th interface.

44th Interface, DO Mode Interface

Press button " \blacktriangle " to set pulse output time of relay. When setting time as "0", the default DO is level mode. After completing modification, press button " \checkmark " and it will enter 45th interface.

45th Interface, Energy Pulse Interface

It displays energy pulse values which each active energy kWh and reactive energy kvarh corresponds to separately. After completing modification, press button "—" and it will enter 46th interface.

46th Interface, Demand Cycle Interface

Demand refers to the maximum value of energy in a certain cycle. The demand cycle can be any one from 5 minutes, 10 minutes, 15 minutes, 30 minutes and 60 minutes, which can be set by pressing button " \blacktriangle ". After completing modification, press button " \twoheadleftarrow " and it will enter 47th interface.

47th Interface, Start-up Diagram Interface

Press button " \blacktriangle " to set start-up time and trigger mode. **P-5***E* refers to self-

judgement and $dI \exists$ refers to DI3 trigger mode. After completing modification, press button " \prec " and it will enter 48th interface.

48th Interface, Start-up Hour Interface for Settlement

It displays the energy settlement hours for last 10 days. Press button "▲" to set settlement time. After completing modification, press button "←" and it will enter 49th interface.

49th Interface, User's Password Interface

User can modify password. The present interface displays the default password. After

completing modification, press button "-" and it will enter 50th interface.

50th Interface, Pulse Output Mode Interface

"0" refers to the energy pulse output mode as active energy. "1" refers to the energy pulse output mode as reactive energy. After completing modification, press button "-" and it will enter 51st interface.

51st Interface, Exit Parameter Group 1 Interface

Press button "←" to exit parameter group 1 and enter 2nd interface. Press button "←" for long and enter password again. Press button "Menu" to display the interfaces as follows:

38th Interface, Parameter Group 2 Interface

542 5

Press button " \leftarrow " to enter parameter group 2 and enter 52nd interface.

52nd Interface, CT Ratio Interface

The present interface displays the CT ratio as 15.000. After completing modification, press button " \checkmark " and it will enter 53rd interface.

53rd Interface, PT Ratio Interface

The present interface displays the PT ratio as 100.0. After completing modification, press button "-" and it will enter 54th interface.

54th Interface, Interface of Decimal Digits of Voltage

The present interface displays the decimal digits of voltage as 1. Press button " \blacktriangle " to set decimal digits. After completing modification, press button " \twoheadleftarrow " and it will enter 54th

55th Interface, Interface of Decimal Digits of Current

The present interface displays the decimal digits of current as 1. Press button " \blacktriangle " to set decimal digits. After completing modification, press button " \twoheadleftarrow " and it will enter 56th interface.

56th Interface, Power Range Interface

The present interface displays the unit of power as kW and maximum power is 9.999kW. After completing modification, press button "-" and it will enter 57th interface.

57th Interface, Rated Voltage Interface

E9-N 05500

User can set rated voltage. The decimal position of rated voltage is the same with that of PT ratio. After completing modification, press button "-" and it will enter 58th interface.

58th Interface, Rated Current Interface

Ed-A 0550

User can set rated current. The decimal position of rated current is the same with that of CT ratio. After completing modification, press button "—" and it will enter 59th interface.

59th Interface, Exit Parameter Group 2 Interface

Press button " \leftarrow " to exit parameter group 2 and enter 2^{nd} interface.

Press button "-" for long and enter password again. Press button "Menu" to display the interfaces as follows:

38th Interface, Parameter Group 3 Interface

Press button "-" to enter parameter group 3 and enter 60th interface.

60th Interface, The Proportion of Starting Current to Rated Current Interface

1-52Ar 25

The setting range for the proportion is $10\% \sim 50\%$. Press button " \blacktriangle " to set the proportion. After completing modification, press button " \checkmark " and it will enter 61^{st} interface.

61st Interface, Start-up Time Interface

E-SEAr DID

The setting range is 1~250s. Press button" \blacktriangle " to set the time. After completing modification, press button " \checkmark " and it will enter 62nd interface.

62nd Interface, Shut down time Interface

E-SE0P 020

The setting range is 1~250s. Press button " \blacktriangle " to set the downtime. After completing modification, press button " \checkmark " and it will enter 63rd interface.

63rd Interface, Harmonic Content Interface

FH98 DC

Press button" \blacktriangle " to cyclical display harmonic content of IA, IB, IC, UA, UB and UC. Press button " \checkmark " and it will enter 64th interface.

64th Interface, Over-current Protection Interface

65th Interface, Over-voltage Protection Interface

Press button " \blacktriangle " to set \mathcal{PLr} as alarm, \mathcal{LUE} as tripping and \mathcal{UIS} as invalid. The setting value range is [105%~200%]Ue, action time 0.1s~25.0s and setting difference 0.1s. The present interface displays the over-voltage protection setting as tripping. When voltage of any phase is more than 130% of rated voltage, delay 5s to trip. After completing modification, press button " \checkmark " and it will enter 66th interface.

66th Interface, Under-voltage Protection Interface

67th Interface, Short-phase Protection Interface

LoSt-1 CUE LoSt-12050

Press button " \blacktriangle " to set **FLC** as alarm, **EUE** as tripping and **d i 5** as invalid. The action time 0.1s~25.0s and setting difference 0.1s. The present interface displays the short-phase protection setting as tripping. When there is short-phase for any phase current, delay 5s to trip. After completing modification, press button " \checkmark " and it will enter 68th interface.

68th Interface, Imbalance Protection Interface

69th Interface, Zero-sequence Over-Current Protection Interface

h1-10 EUE h1-100 080 h1-10E 050

Press button " \blacktriangle " to set **PL** as alarm, **EUE** as tripping and **d**? **5** as invalid. The setting value range is [30%~100%]Ie, action time 0.1s~25.0s and setting difference 0.1s. The present interface displays the over-current protection setting as tripping. When zero-sequence current is more than 80% of rated current, delay 5s to trip. After completing modification, press button " \checkmark " and it will enter 70th interface.

70th Interface, Zero-sequence Over-voltage Protection Interface

Press button " \blacktriangle " to set $\square \square \square$ as alarm, $\square \square \square$ as tripping and $\square \square \square$ as invalid. The setting value range is [30%~100%]Ue, action time 0.1s~25.0s and setting difference 0.1s. The present interface displays the zero-sequence over-voltage protection setting as tripping. When zero-sequence voltage is more than 50% of rated voltage, delay 5s to trip. After completing modification, press button " \checkmark " and it will enter 71st interface.

71st Interface, Exit Parameter Group 3 Interface

3-E

Press button " \leftarrow " to exit parameter group 3 and enter 2^{nd} interface.

Press button "-" for long and enter password again. Press button "Menu" to display the interfaces as follows:

38th Interface, Parameter Group 4 Interface

Press button " \leftarrow " to enter parameter group 4 and enter 72nd interface.

72nd Interface, Time of Use Interface(10 TOU Settable)

Press button " \blacktriangle " to set the starting and ending time of TOU. Press button " \twoheadleftarrow " to switch and set TOUs. After setting all 10 TOUs, press button " \twoheadleftarrow " and it will enter 73rd interface.

73rd Interface, Exit Parameter Group 4 Interface

Press button " \checkmark " to exit parameter group 4 and enter 2nd interface.

Press button "-" for long and enter password again. Press button "Menu" to display the interfaces as follows:

38th Interface, Parameter Group 5 Interface

Press button "-" to enter parameter group 5 and then enter 74th interface.

74th Interface, SOE Query Interface

The present interface displays causes and time of event-1. Press button "-" to query SOE and enter 75th interface.

The causes of SOE are remarked as follows

Over- Current	Over- Voltage	Under- Voltage	Short- Phase	Unblance	Zero- Sequence Current	Zero- Sequence Over-Voltage
HI -1	ні – Ц	Lo-U	LoSt	BrEAd	HI -I 🛛	HI -UD
DI1 Connected	DI1 Disconnected	DI2 Connected	DI2 Disconnected	Clear Energy	Parameter Modification	
di 1-1	dl 1-0	dl 2- 1	aı 5-0	cLrE	SEF2	

75th Interface, Exit Parameter Group 5 Interface

Press button " \checkmark " to exit parameter group 5 and enter 2nd interface.

Chapter 7 After-sales Service

Product Warranty

1. The product warranty period is one year.

2. The company is responsible for free maintenance or exchange within one-year warranty period.

3. The cost of the components and freight shall be charged for improper meter installation and/or operation.

4. Over the warranty period, part of the maintenance cost according to actual situation will be charged.

Service Guarantee

- 1. Product technical consulting and quality complaints will be replied within 12 hours.
- 2. Solutions for quality complaints will be provided within 24 hours.

3. Except statutory holidays and force majeure.

Chapter 8 Contact Us

Headquarter Add.: 7F No.1 Aosheng Building, 1166 Xinluo Street, High-tech Development Zone, Jinan, P.R. China 250101 Factory Add.: 2F Innovation Factory, Feiyue Road, High-tech Development Zone, Jinan, P.R. China 250101 Tel: +86 68621770-863 Code: 250101 E-mail: info@heyuanintel.com